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On the non-integrability of the Stormer problem 

M A Almeidal, I C Moreirats and H Yoshidat: 
t lnstituto de Fisica, Univenidade Federal d o  Rio de Janeiro, Caina Postal 68528, FundPo. 
21945 Rio de Janeiro, Brazil 
i National Astronomical Observatory, Mitaka, Tokyo 181, Japan 

Received IO October 1991, in final farm 20 December 1991 

Abstract. In this letter we prove the non-integrability of the StSmer problem, by using 
the Ziglin-Yoshida method. 

The problem of the motion of an electrically charged particle in a magnetic field was 
first formulated by Stormer [I]. This problem is an important one because of its 
applications to the case of the Earth’s magnetic field. Dragt and Finn [Z], by using 
topological and numerical techniques, showed that, in this case, the motion of trapped 
charged particles is expected to be non-integrable. Recently Jung and Scholz [3] studied 
the classical scattering of the same problem and found numerical evidence of chaotic 
behaviour. See also Jimhez-Lara and Piiia [4] for the history of researches on this 
problem. 

The purpose of this letter is to prove the non-integrability of the equations which 
describe this motion. A non-integrability criterion on the basis of Ziglin’s theorem [ 5 ]  
was given by Yoshida [ 6 ]  for two-degrees-of-freedom Hamiltonians with a 
homogeneous potential of integer degree. Making the reduction of the original Hamil- 
tonian to a two-dimensional homogeneous problem, we can apply these results and 
prove the non-integrability of the system. Another proof of non-integrability was given 
by Noguera [7], who shows the inclusion of the Bernoulli shift as a subsystem of the 
invariant manifolds of the Lyapunov’s orbit in the isolated equilibrium point. 

A Hamiltonian system with N degrees of freedom is Liouville integrable whenever 
N integrals of motion, global, analytical and in involution can be obtained. Furthermore 
if the level set (intersection) of these integrals is compact and their gradient vectors 
are linearly independent on the level set for a given initial condition, then the motion 
is expressed as a quasiperiodic motion o n  an N-dimensional torus. The proof of the 
integrability of a Hamiltonian system is based on the exhibition of these N integrals 
of motion. Several methods for the identification of classes of integrable systems have 
been developed: Painlev6 test [ 8 ] ,  symmetry analysis [9], direct construction of 
invariants [lo], etc. However, the proof of the non-integrability is a quite difficult 
problem in general. In [5 ]  Ziglin has proven a theorem which gives a necessarycondition 
for integrability and can thus be used to prove the non-integrability of a given 
Hamiltonian system. He considered the monodromy properties around particular 
solutions and the conditions for the non-existence of an additional integral of motion. 
In Ziglin’s original paper the motion of a rigid body around a fixed point was considered 
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as an example. A few applications of Ziglin's approach were given in the last years 
for Hamiltonian systems with the form: (i) homogeneous potentials [6], (ii) some 
generalized Toda lattices [ll],  (iii) some perturbed Kepler potentials [U], (iv) the 
swinging Atwood's machine [13, 141, (v) non-homogeneous polynomial potentials of 
degree 3 or 4 [15], and (vi) truncated Toda lattice of any order [16]. 

Significant advances in the Ziglin's approach were made in the case of homogeneous 
potentials [6,17]. In particular, Yoshida proved a theorem concerning the non-integra- 

degree, where everything necessary for Ziglin's theorem to be applied is given explicitly. 

Yoshida's main theorem [6]. Let V(q,,  q2) be a homogeneous potential function of an 
integer degree k and compute the quantity (integrability coefficient) A defined by 

(1) 

where V, is the Hessian matrix of V(q,,  q2), and ( c l ,  c2) is a solution of the algebraic 
equations 

&:I:+.. - F * w n  ,i:-a-..:--ml U n m i 1 t n - i - r  ~ . . ~ t ~ m o  .xr:th - h------n-..- --+o-+:mt -C:-+a-a- 
",U,J "1 In"-"llllrl.UL"LI',I I.II....I,"...PI. "J"L'.L'" ".&S. 01 " " L 1 . " p ' . C " Y ~  p",C'.,", "L .,,,C&,C, 

' 

A = Tr[ VII(ct, C2)] - (k- I )  

If A is in the region Sk defined below, then the two degrees of freedom Hamiltonian 
system 

H = ( P : + P : ) / ~ +  V(qi.  q J  (3) 

is non-integrable, i.e., there cannot exist an additional integral which is complex analytic 
in ( q , ,  q2) and (pI,p2). The regions Sk are defined as follows: 

(i) k a 3  

S, ={A < O ,  1 < A  < k - 1 , .  . . , j ( j - l ) k / 2 + j < A  < j ( j + l ) k / 2 - j , .  . . }; 
(ii) S,=R-[O,1,3,6 ,..., j ( j + l ) / 2  ,... }; 
(iii) S- ,=R-{1 ,0 , -2 , -5  ,..., - j  ( j + I ) / 2 + l 1  . . .  }; 
(iv) k s - 3  

& = [ A >  l , O > h >  -Ikl+Z, - I k l - l > A >  -31k1+3,. . . , 
-j(  j -  l)lkl/Z- ( j  - 1 )  > A  > - j ( j +  l)Ikl/Z+(j+ 11,. . . }. (4) 

Note that when k =0, -2, +2 we have no such regions. Indeed when k = -2 every 
potential is integrable. On the other hand when k = 0 and k = 2, another analysis is 
necessary. 

Let us consider the non-relativistic motion of a charged particle of mass m and 
charge q moving in the field of a magnetic dipole of magnetic moment M [2]. It is 
described by the Hamiltonian 

.. ~ = [ p - ( q / c ) A ! ~ / 2 m  ( 5 )  

with 

A = ( M x r ) / r 3 .  ( 6 )  
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By choosing the z axis in the direction of M, i.e. M = (0, 0, M ) ,  we have 

H = [ ( P ~ + Q Y / ~ ’ ) ~ + ( P ,  - a x / r 3 ) 2 + p : 1 / 2  (7) 
with m = l , r = [ ~ ~ + y ~ + z ~ ] ~ / *  and a = q M / c .  

From (7) we get 

H = [ P : + P : + ~ : ~ / ~ + ( Q / ~ ’ ) ( Y P ~  - ~ P ~ ) + ( O ~ / ~ ~ ~ ) ( X ~ + Y ~ ) .  (8) 

The equations of motion for this system are time-independent, axisymmetric and have 
also a scale symmetry [ l S ] .  The following integrals of motion exist: the Hamiltonian 
(8) and the projection of the angular momentum in the direction of M 

L, = XP, - y p x .  (9) 

If we choose cylindrical coordinates (p, 4, z ) ,  the Hamiltonian (8) becomes 

H = [ p : + p : / p 2 + p : ] / 2 +  (a2pz /2 ) (p2+z2) -3+  ap,(p2+ z2)-’/* (10) 

and p ,  = L, =constant of motion. 
As far as the motion in p and z is concerned we can regard If(&, p z ,  p, z, pm = 

constant) as a reduced Hamiltonian describing the two-dimensional motion in the 
(p, z )  plane. In particular, if we take pm = 0 we get the reduced Hamiltonian 

H = [ p : + p : ] / z + ( ~ ~ ~ ~ / 2 ) ( ~ ’ +  z*)-’. (11) 

If the original Hamiltonian (10) is integrable with a third integral of motion @ =  
constant, then the reduced Hamiltonian (11) should he integrable too. This reduced 
Hamiltonian (11) has a homogeneous potential with degree k =  -4: 

v=  ( 2 p 2 / 2 ) ( p 2 +  z2) - ] .  (12) 

From (2) we get the algebraic equations 

c, = a 2 c , ( c ~ + c ~ ) - 3 - 3 a z c ~ ( c ~ + c ~ ) ~ ‘  

c2= -3Q2c:c,(c:+C:)-4. 

A solution for (13) is 

c, = [ - 2 a 2 ] ‘ / 6  and c2 = 0. 

The Hessian matrix is given by 

v J = [ - 5  0 3 / 2  O ]  

____, 2nd therefore __________, the ..._ inteorahilitv ...__ cnefficient ___......... A ~. for ~.~ the ~~~~ potentia! (12) will he 

A = Tr[ K j ( c , ,  c2 ) ]  - ( k  - 1) = 3/2. (16) 

In this case, the Yoshida theorem gives us the following non-integrability domains: 

K4= {A > 1,0> A >  -2, -5> A > -9,. . .). (17) 

As A,  from (16), falls in the region S L ,  we conclude that the potential (12)  is a 
non-integrable one. 

To summarize: we used the Ziglin-Yoshida method for proving the non-integrability 
of the Stormer problem. Our analysis was performed by using a reduction of the system 
to a two-dimensional homogeneous potential, at zero angular momentum. 
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We are grateful to C Farina and J Cariiiena for sending us a copy of the reference [7]. 
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